

Grass Silage Trial: Ecosyl treated vs Untreated

Dr Mark Leggett | Dr Gopal Kedia | Sophie Bannister | Philip Jones

Trial Summary

Wilted grass at 32 % DM was treated with Ecosyl or left untreated and ensiled for 90 days.

Treating with Ecosyl resulted in a rapid lactic acid fermentation, lowering the silage pH and effectively controlling the activity of enterobacteria and clostridia.

Untreated silage fermented poorly, resulting in a high pH. The higher pH allowed enterobacteria and clostridia to thrive within the fermentation resulting in production of butyric acid and high DM losses, relative to the Ecosyl treated silage.

Using the data from our trial, we can estimate some of the benefits of using Ecosyl:

	Untreated	Treated
Fresh matter clamped (T)	1000	1000
DM% in the clamp	32%	32%
DM in the clamp (T)	320	320
DM losses during ensilage	10.1%	4.6%
DM remaining in clamp after losses (T)	287.68	305.28
Extra DM from Ecosyl silage (T)	17.60	

	Untreated	Treated
Silage ME (MJ/kgDM)	11.27	11.48
Intake (kgDM/cow/day) ¹	11.6	12.0
ME intake/cow/day (MJ)	130.7	137.8
ME available for milk (MJ) ²	55.7	62.8
Milk production (L/cow/day) ³	10.5	11.8
Extra Milk from Ecosyl silage (L/cow/day)	1.3	

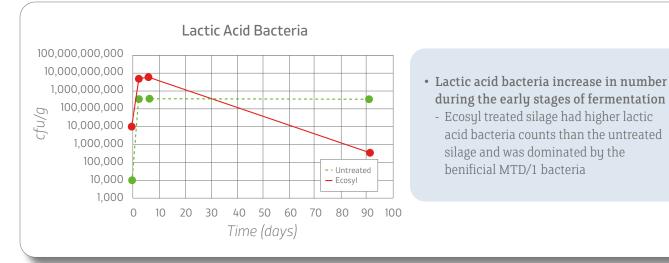
	Untreated	Treated
ME in the clamp (MJ)	3,242,154	3,504,614
Total milk potential (L/ whole clamp)	260,784	301,248
Extra milk from Ecosyl Silage (L/whole clamp)		40,464
Value of extra milk (£)		£10,116
Extra margin after the cost of Ecosyl		£8,836
Return on investment		6.9 : 1

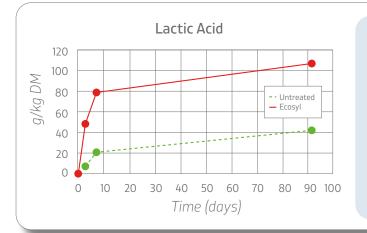
Lower DM losses means more silage to feed

- A clamp containing 1000 T fresh matter at 32% DM will contain 320 T DM.
- Given the losses seen in this trial, there would be 17.6 T more DM to feed in the Ecosyl clamp compared with the untreated clamp.

Using Ecosyl resulted in a higher energy silage yielding more milk

• In this study, Ecosyl silage could support the production of an additional 1.3 L of milk per cow per day compared with the untreated silage.


Return on investment


- Considering the energy present on a whole clamp basis, we can calculate potential milk yield from all the silage present.
- Given the improved DM retention and the higher ME, the Ecosyl treated silage holds the potential to support more than 40,000 L of additional milk compared to the untreated silage.
- With a milk price of 25 p and accounting for the price of the additive (£1.28 / T treated), this would equate to a profit of £8,836, a return on investment of 6.9 to 1.

¹Independent research has demonstrated that, on average, Ecosyl increased silage intakes by 0.4 kg DM/cow/day.

²Typical Holstein/Friesian cows require 10% of their bodyweight plus 10 MJ of ME each day for maintenance. This means a 650kg cow requires (650 x 10 ÷ 100) + 10 = 75 MJ of ME/day for maintenace.

³Typical Holstein/Friesian cows producing milk at 4% fat and 3.3% protein require around 5.3 MJ of ME for every liter.

pН

40 50

Time (days)

60 70 - · Untreated

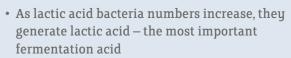
- Ecosyl

80 90 100

7.0 6.5

6.0

5.5


4.5

4.0

3.5 3.0 0 10

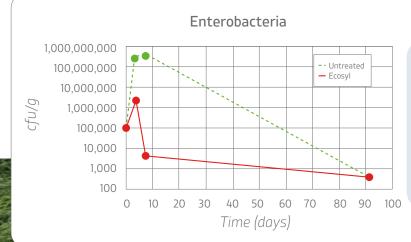
20 30

H 5.0

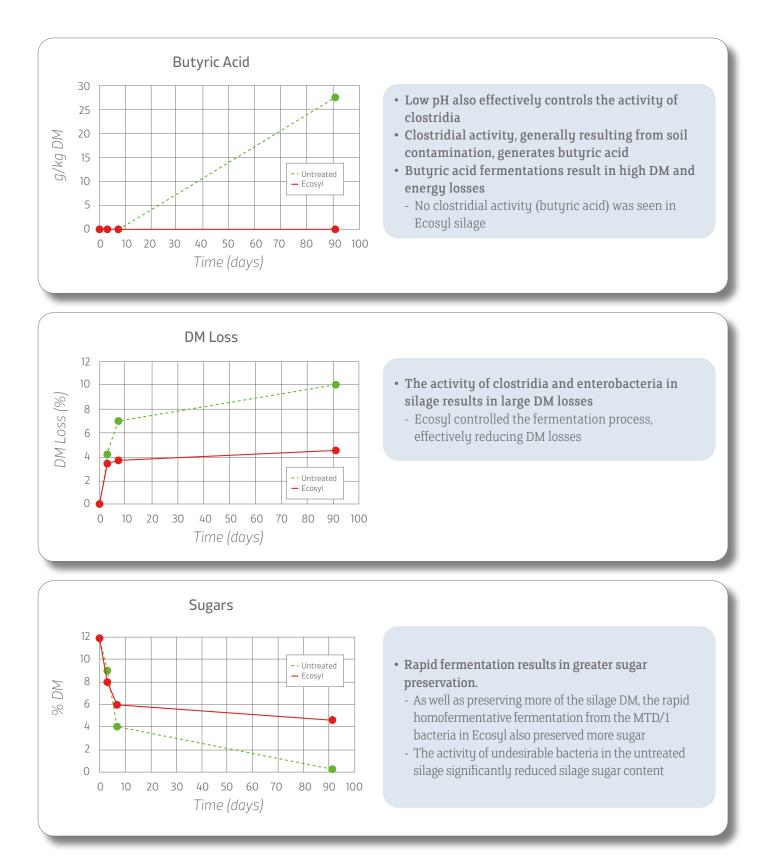
during the early stages of fermentation

acid bacteria counts than the untreated

- Ecosyl treated silage had higher lactic


silage and was dominated by the

benificial MTD/1 bacteria

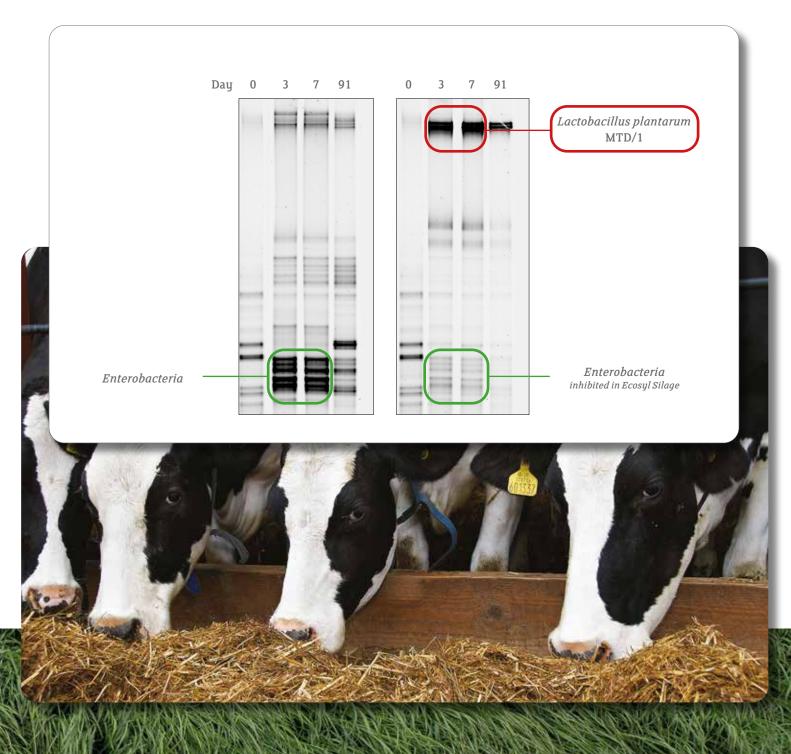

• Other fermentation end products represent less efficient uses of plant nutrients

- The MTD/1 bacteria in Ecosyl treated silage consistently produced more lactic acid than the untreated silage

- · Lactic acid generated by lactic acid bacteria lowers the silage pH
- Rapid reduction of pH is vital for stabilising the silage
 - Ecosyl treated silage was acidified more rapidly and more extensively than the untreated silage

- A low pH allows effective control of enterobacteria (commonly found in slurry)
- Enterobacteria in silage can produce acetic acid and ethanol resulting in DM and energy losses
 - The rapid fermentation in Ecosyl silage resulted in more effective control of enterobacteria

Conclusion:


Treating with Ecosyl (MTD/1) rapidly dropped the pH and controlled spoilage organisms, resulting in reduced DM & sugar losses. This resulted in more of a higher quality silage to feed.

Bacterial DNA Profile

The image below shows a snap-shot of all bacteria present in the untreated or Ecosyl silage after 0, 3, 7 and 91 days ensiling. Each band represents the DNA of a different type of bacteria. **Darker bands** indicate more numerous bacteria, whereas *fainter bands* represent less numerous bacteria.

The fermentation in the Ecosyl silage was dominated by the beneficial bacteria *Lactobacillus plantarum* MTD/1 (**dark bands** shown in the red box below) which prevented the growth of bad bacteria (enterobacteria, commonly from slurry) (*faint bands* green box below), preserving the silage sugars and DM.

Untreated silage did not contain the MTD/1 bacteria, meaning that the early stages of this fermentation were dominated by enterobacteria (**dark bands** shown in the green box below), resulting in high DM losses and lower sugar levels.

For consistently better silage

f Sollow us @ecosyl and @ecosyl_

For further information:

Visit | www.ecosyl.com

Copyright \odot 2019 Volac International Ltd. All rights reserved.