AMINO ACIDS IN LUCERNE SILAGE: 1. EFFECTS OF CHOP LENGTH

ibers

CNYDAU GWYDN

RESILIENT CROPS

Rhun Fychan¹, Mark Leggett², John Davies¹, Angelika Borkowska², Ruth Sanderson¹

Mark Scott¹, Sian MacKintosh¹, Phil Jones² and Christina Marley¹

¹ IBERS, Aberystwyth University, Ceredigion, Wales, UK.

² Volac International Ltd., Port Talbot, Wales, UK.

INTRODUCTION

- · Lucerne (Medicago sativa) has a low sugar content and high buffering capacity making it difficult to ensile.
- · Packing density during ensilage can alter protein degradation but little is known about the effects on individual amino acids
- · We investigated the effect of chop length on the protein stability and amino acid profile of lucerne silage

MATERIALS AND METHODS

- · Lucerne cut & wilted for 24 h was chopped to 25 (Long) or 12mm (Short length; SL)
- Ensiled in triplicate 2 L silos and inoculated with L. plantarum Ecosyl 100.
- · Total N, Soluble N, lactate, VFA, pH and ethanol content was determined.
- Free and total amino acid (AA) determined by ion exchange chromatography.

RESULTS

- · Forages did not differ in composition at ensiling.
- SL silage had lower pH & higher lactate (Table 1).
- No effect of chop length on silage total AA or total essential AA (EAA) concentrations but both total and essential free AA were lower in SL.
- SL silage had lower free AA (57.0 v 62.0; P = 0.002) and free EAAs (33.4 v 38.1; P < 0.001) when expressed as % of total AAs.
- Short chopping also reduced the free EAA as a % of the total EAAs (66.1 v 74.1; P < 0.005).

Fig 1. Total concentrations (g/kg DM) of AAs

Table 1. Chemical composition of lucerne following 96 days ensiling at two chop lengths (g/kg DM unless otherwise stated).

	Long	Short	s.e.m.	Prob
рН	4.47	4.40	0.009	0.007
Lactate	68.2	79.6	1.30	0.003
Acetate	15.4	18.4	0.487	0.013
Ethanol	5.26	2.85	0.183	<0.001
Lactate (% TFA)	76.9	77.6	0.38	0.266
Total N	32.6	32.1	0.36	0.413
Soluble N (g/kg TN)	840.5	807.5	9.55	0.071
Amino acids				
Total	166.4	165.4	1.20	0.581
Total essential	85.7	83.6	1.17	0.270
Total Free	103.2	94.2	0.23	<0.001
Free essential	63.4	55.2	0.21	<0.001

- Total concentrations (g/kg DM) of the EAA threonine and histidine, and non-essential serine and glutamic acid, were higher (P < 0.05), whilst EAA arginine and lysine were lower in SL silage (P < 0.01) (Fig. 1).
- In the free form, the % of EAA, arginine and lysine, and non-essential serine, were lower with SL (P < 0.001).
- In the free form, the % of EAA threonine, leucine and histidine, and non-essential alanine, proline, aspartic and glutamic acids, were higher with SL (P < 0.05).

ACKNOWLEDGEMENTS

The GrOw Wales Green project was funded through the Welsh Gov Rural Communities – Rural Development Programme 2014-2020, funded by the Welsh Government and the European Union.

CONCLUSIONS

A shorter chop length silage, with a higher packing density, had lower free AA compared to long chop silage. When determined as a % of total AAs, a short chop silage had lower free AAs and free essential AAs compared to long chop.

